\qquad

Unit \#1 - Function Test Review

Part I Questions - Multiple Choice

1. Which of the following sets of ordered pairs would not be considered a function?
(1) $\{(-4,1),(-1,7),(3,8),(5,3)\}$
(2) $\{(-2,5),(6,1),(-2,10),(6,-1)\}$
(3) $\{(2,8),(4,10),(6,8),(8,10)\}$
(4) $\{(-3,5),(3,-5),(-6,7),(6,-7)\}$
2. In the following graph, the height of an object, in feet, is given as a function of time in seconds. Which of the following would be the range of this function?
(1) $[0,5]$
(2) $[0,11]$
(3) $[176,576]$
(4) $[0,576]$

3. In which of the following four graphs is the output not a function of the input?

4. If $f(x)=-\frac{1}{2} x+6$, then which of the following values solves the equation $f(x)=10$?
(1) 1
(3) -8
(2) -4
(4) 11
5. The function f is defined by the formula $f(x)=x^{2}+2$ and the function g is defined by the graph shown below. Which of the following is the value of $f(g(2))$?
(1) 18
(3) 5
(2) 14
(4) 9

6. Given the function $f(x)$ shown in the graph below, for which of the following intervals is $f(x)>0$?
(1) $(0,8)$
(2) $[0,8]$
(3) $(-4,6)$
(4) $[-4,6]$

7. Which of the following values of x would not be in the domain of the function $f(x)=\frac{x-7}{2 x+5}$?
(1) 7
(3) -5
(2) $-2 \frac{1}{2}$
(4) -7
8. If the point $(4,-2)$ lies on the graph of $y=f(x)$, then which of the following points must lie on the graph of its inverse, i.e. $y=f^{-1}(x)$?
(1) $(-2,4)$
(3) $(-4,2)$
(2) $\left(\frac{1}{4},-\frac{1}{2}\right)$
(4) $(4,2)$
9. Given the function shown below, over which of the following intervals is the function always increasing?
(1) $0<x<5$
(2) $-5<x<2$
(3) $-1<x<4$
(4) $-9<x<-5$

10. Which of the following is the y-intercept of the piecewise defined function $g(x)=\left\{\begin{array}{cl}6 x+5 & x<-2 \\ (x-3)^{2}-1 & x \geq-2\end{array}\right.$?
(1) 5
(3) -1
(2) 6
(4) 8
11. Which of the following is the equation of the inverse of the linear function $y=4 x-2$?
(1) $y=\frac{1}{4} x+\frac{1}{2}$
(3) $y=-4 x+2$
(2) $y=\frac{1}{4} x+2$
(4) $y=-\frac{1}{4} x+8$
12. Which of the following is the equation of the piecewise linear function shown below?
(1) $f(x)=\left\{\begin{array}{cc}x+4 & x<2 \\ 3 x+5 & x \geq 2\end{array}\right.$
(2) $f(x)= \begin{cases}\frac{1}{2} x+4 & x<2 \\ 3 x-1 & x \geq 2\end{cases}$
(3) $f(x)=\left\{\begin{array}{cc}-\frac{1}{4} x+5 & x<2 \\ 3 x-3 & x \geq 2\end{array}\right.$
(4) $f(x)=\left\{\begin{array}{cc}-2 x+4 & x<2 \\ 4 x+1 & x \geq 2\end{array}\right.$

13. The graph of a function and the graph of its inverse always have symmetry across
(1) the x-axis
(3) the line $y=x$
(2) the y-axis
(4) the line $y=-x$

Free Response Questions

14. Given the function $y=f(x)$ shown graphed below, answer the following questions.
(a) State the value of $f(2)$.
(b) How many values solve the equation $f(x)=5$?

Explain how you arrived at your answer.
(c) On the interval $0<x<4$ is the function increasing or decreasing? How can you tell?

15. Given the function $y=f(x)$ shown below do the followi
(a) Graph the function's inverse, $f^{-1}(x)$.
(b) State the range of $f^{-1}(x)$.
(c) What is the value of $f^{-1}(-3)$?
16. Given the linear graph shown below answer the following .

(a) Write the equation of the line in $y=m x+b$ form.
(b) Create a graph of this linear function's inverse on the same set of graph paper.
(c) Determine the equation of the inverse.

17. Determine a piecewise equation for the function shown graphed below.

