Name:

(5,576)

·Time (sec)

UNIT #1 – FUNCTION TEST REVIEW

Part I Questions – Multiple Choice

- Which of the following sets of ordered pairs would *not* be considered a function?
 (1) {(-4,1), (-1,7), (3,8), (5,3)}
 - (2) $\{(-2,5), (6,1), (-2,10), (6,-1)\}$
 - $(3) \{(2,8), (4,10), (6,8), (8,10)\}$
 - $(4) \left\{ \left(-3,5\right), \left(3,-5\right), \left(-6,7\right), \left(6,-7\right) \right\} \right.$
- 2. In the following graph, the height of an object, in feet, is given as a function of time in seconds. Which of the following would be the range of this function?(1) [0, 5]
 - (2) [0,11]
 - (3) [176, 576]
 - (4) [0, 576]

(0,176)

Height (ft)

3. In which of the following four graphs is the output *not* a function of the input?

- 4. If $f(x) = -\frac{1}{2}x + 6$, then which of the following values solves the equation f(x) = 10?
 - (1) 1 (3) -8
 - (2) -4 (4) 11
- 5. The function f is defined by the formula $f(x) = x^2 + 2$ and the function g is defined by the graph shown below. Which of the following is the value of f(g(2))? y
 - (1) 18 (3) 5
 - (2) 14 (4) 9

6. Given the function f(x) shown in the graph below, for which of the following intervals is f(x) > 0?

- 7. Which of the following values of x would *not* be in the domain of the function $f(x) = \frac{x-7}{2x+5}$?
 - (1) 7 (3) -5

$$(2) -2\frac{1}{2} \qquad (4) -7$$

- 8. If the point (4, -2) lies on the graph of y = f(x), then which of the following points must lie on the graph of its inverse, i.e. $y = f^{-1}(x)$?
 - (1) (-2, 4) (3) (-4, 2)

(2)
$$\left(\frac{1}{4}, -\frac{1}{2}\right)$$
 (4) $\left(4, 2\right)$

9. Given the function shown below, over which of the following intervals is the function always increasing?

10. Which of the following is the *y*-intercept of the piecewise defined function $g(x) = \begin{cases} 6x+5 & x<-2\\ (x-3)^2-1 & x \ge -2 \end{cases}$?

- (1) 5 (3) -1
- (2) 6 (4) 8

11. Which of the following is the equation of the inverse of the linear function y = 4x - 2?

(1)
$$y = \frac{1}{4}x + \frac{1}{2}$$
 (3) $y = -4x + 2$

(2)
$$y = \frac{1}{4}x + 2$$
 (4) $y = -\frac{1}{4}x + 8$

12. Which of the following is the equation of the piecewise linear function shown below?

13. The graph of a function and the graph of its inverse always have symmetry across

(1) the <i>x</i> -axis	(3) the line $y = x$
------------------------	----------------------

(2) the y-axis (4) the line y = -x

Free Response Questions

- 14. Given the function y = f(x) shown graphed below, answer the following questions.
 - (a) State the value of f(2).
 - (b) How many values solve the equation f(x) = 5? Explain how you arrived at your answer.
 - (c) On the interval 0 < x < 4 is the function increasing or decreasing? How can you tell?

- 15. Given the function y = f(x) shown below do the followi
 - (a) Graph the function's inverse, $f^{-1}(x)$.
 - (b) State the range of $f^{-1}(x)$.
 - (c) What is the value of $f^{-1}(-3)$?
- 16. Given the linear graph shown below answer the following
 - (a) Write the equation of the line in y = mx + b form.
 - (b) Create a graph of this linear function's inverse on the same set of graph paper.
 - (c) Determine the equation of the inverse.
- 17. Determine a piecewise equation for the function shown graphed below.

