Points of Concurrency

	Incenter	Circumcenter	Centroid	Orthocenter
Formed by intersection of:	Angle Bisectors	Perpendicular Bisectors	Medians	Altitudes
Definition of segments	At each vertex, bisects angle into two ≅ parts.	Bisects a side into two ≅ parts and forms a 90° angle.	Connects a vertex to midpoint of the opposite side.	Connects a vertex at 90° (perpendicular) to opposite side (or extension of).
Location	Always Inside	 Inside (Acute Δ) ON (Right Δ- at midpoint of hypotenuse) Outside (Obtuse Δ) 	Always Inside	 Inside (Acute Δ) ON (Right Δ- at vertex of right angle) Outside (Obtuse Δ)
Segments ARE NOT always	 passing through midpoint of opposite side. perpendicular (90°) to opposite side. 	o angle bisectors.	 angle bisectors. perpendicular (90°) to opposite side. 	 angle bisectors. passing through midpoint of opposite side.
Special properties:	 > equidistant from the sides of the ∆. > center of the inscribed circle. 	 > equidistant from the vertices of the ∆. > center of circumscribed circle. 	 > located ²/₃ the distance from vertex to side. > 2:1 ratio from vertex. > center of gravity of ∆. 	≻ NOTHING!

Special ∆s, special properties:	Equilateral Δs : All 4 points are located at the <u>same point</u> .		
	Isosceles ∆s: All 4 points are <u>collinear</u> .		